Fast Iterative Subspace Algorithms for Airborne STAP Radar

نویسندگان

  • Hocine Belkacemi
  • Sylvie Marcos
چکیده

Space-time adaptive processing (STAP) is a crucial technique for the new generation airborne radar for Doppler spread compensation caused by the platform motion. We here propose to apply range cell snapshots-based recursive algorithms in order to reduce the computational complexity of the conventional STAP algorithms and to deal with a possible nonhomogeneity of the data samples. Subspace tracking algorithms as PAST, PASTd, OPAST, and more recently the fast approximate power iteration (FAPI) algorithm, which are time-based recursive algorithms initially introduced in spectral analysis, array processing, are good candidates. In this paper, we more precisely investigate the performance of FAPI for interference suppression in STAP radar. Extensive simulations demonstrate the outperformance of FAPI algorithm over other subspace trackers of similar computational complexity. We demonstrate also its effectiveness using measured data from the multichannel radar measurements (MCARM) program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Cascaded Reduced-Dimension STAP Method for Airborne MIMO Radar in the Presence of Jammers

A cascaded reduced-dimension (RD) space-time adaptive processing (STAP) method for airborne multipleinput multiple-output (MIMO) radar in the presence of jammers is proposed in this paper. The proposed MIMOSTAP method for clutter plus jamming suppression proceeds in two steps. Firstly, the jamming is suppressed by its orthogonal complementary subspace obtained in the passive radar mode, while t...

متن کامل

Knowledge-Aided STAP Using Low Rank and Geometry Properties

This paper presents knowledge-aided space-time adaptive processing (KA-STAP) algorithms that exploit the lowrank dominant clutter and the array geometry properties (LRGP) for airborne radar applications. The core idea is to exploit the fact that the clutter subspace is only determined by the spacetime steering vectors, redwhere the Gram-Schmidt orthogonalization approach is employed to compute ...

متن کامل

Knowledge-Aided Non-Homogeneity Detector for Airborne MIMO Radar STAP

The target detection performance decreases in airborne multiple-input multiple-output (MIMO) radar space-time adaptive processing (STAP) when the training samples contaminated by interference-targets (outliers) signals are used to estimate the covariance matrix. To address this problem, a knowledge-aided (KA) generalized inner product non-homogeneity detector (GIP NHD) is proposed for MIMO-STAP...

متن کامل

Sparsity-Aware STAP Algorithms Using L1-norm Regularization For Radar Systems

This article proposes novel sparsity-aware spacetime adaptive processing (SA-STAP) algorithms with l1-norm regularization for airborne phased-array radar applications. The proposed SA-STAP algorithms suppose that a number of samples of the full-rank STAP data cube are not meaningful for processing and the optimal full-rank STAP filter weight vector is sparse, or nearly sparse. The core idea of ...

متن کامل

Cognitive SATP for Airborne Radar Based on Slow-Time Coding

Space-time adaptive processing (STAP) techniques have been motivated as a key enabling technology for advanced airborne radar applications. In this paper, the notion of cognitive radar is extended to STAP technique, and cognitive STAP is discussed. The principle for improving signal-to-clutter ratio (SCNR) based on slow-time coding is given, and the corresponding optimization algorithm based on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006